

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

ATOMIC & MOLECULAR PHYSICS

PREVIOUS YEAR'S QUESTIONS WITH ANSWER (CHAPTER-WISE)

ATOMIC

- 隐 **MOLECULAR**
- **LASER PHYSICS**

"We Believe In Quality Education"

ATOMIC

- **1.** Given that the ground state energy of the hydrogen atom is –13.6 eV, the ground state energy of positronium (which is a bound state of an electron and a positron) is: [**CSIR-DEC-2011]** (a) + 6.8 eV (b) – 6.8 eV (c) – 13.6 eV (d) – 27.2 eV
- 2. If the hyperfine interaction in an atom is given by $H = a\vec{S}_e \cdot \vec{S}_P$ where \vec{S}_e and \vec{S}_P denote the electron and proton spins, respectively, the splitting between the ${}^{3}S_{1}$ and ${}^{1}S_{0}$ state is. [CSIR-DEC-2011] $a\hbar^2$

(a)
$$
a\hbar^2/\sqrt{2}
$$
 (b) $a\hbar^2$ (c) $a\hbar^2/2$ (d) $a\hbar$

3. The ratio of intensities of the D_1 and D_2 lines of sodium at high temperature is: [**CSIR-DEC-2011]** (a) 1:1 (b) 2:3 (c) 1:3 (d) 1:2

4. An atom of mass M can be excited to a state of mass $(M + \Delta)$ by photon capture. The frequency of a photon which can cause this transition is. **[CSIR-DEC-2011]** $(a) \frac{\Delta c^2}{\Delta h}$ $rac{\Delta c^2}{2h}$ (b) $rac{\Delta c^2}{h}$ h $(c) \frac{\Delta^2 c^2}{2M}$ $\frac{\Delta^2 c^2}{2Mh}$ (d) $\frac{\Delta c^2}{2Mh} (\Delta + 2M)$

5. The spin-orbit interaction in an atom is given by $H = a\vec{L} \cdot \vec{S}$, where \vec{L} and \vec{S} denote the orbital and spin angular momenta, respectively, of the electron. The splitting between the levels ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ is. [**CSIR-JUNE-2012**]

 $(a) \frac{3}{2} a \hbar^2$ (b) $\frac{1}{2}$ a \hbar^2 (c) $3a\hbar^{22}$ $\frac{22}{2}$ (d) $\frac{5}{2}$ a \hbar^2

6. The spectral line corresponding to an atomic transition from $J = 1$ to $J = 0$ states splits in a magnetic field of 0.1 Tesla into three components separated by 1.6 x 10^{-2} Å, if the zero field spectral line corresponds to 1849 Å, what is the g-factor corresponding to the $J = 1$ state? (You may use $\frac{hc}{c}$ μ_0 $\approx 2 \times 10^4$ cm).

- [**CSIR-JUNE-2012]** (a) 2 (b) $3/2$ (c) 1 (d) $1/2$
- **7.** A muon (μ^-) from cosmic rays is trapped by a proton to form a hydrogen-like atom. Given that a muon is approximately 200 times heavier than an electron, the longest wavelength of the spectral line (in the analogue of the Lyman series) of such an atom will be. *CSIR-JUNE-2013* (a) 5.62 Å (b) 6.67 Å
	- (c) 3.75 Å (d) 13.3 Å

 Career Spectra

8. A perturbation $V_{\text{pert}} = aL^2$ added to the Hydrogen atom potential. The shift in the energy level of the 2P state, when the effects of spin are neglected up to second order in a , is [**CSIR-DEC-2013**] (a) 0 (b) $2a\hbar^2 + a^2\hbar^4$

 (c) 2a \hbar^2

(d) $a\hbar^2 + \frac{3}{2}$ $\frac{3}{2}a^2\hbar^4$

9. The spectroscopic symbol for the ground state of $_{13}$ Al is $^{2}P_{1/2}$. Under the action of a strong magnetic field (when $L \square S$ coupling can be neglected) the ground state energy level will split into [**CSIR-DEC-2013**] (a) 3 levels (b) 4 levels (c) 5 levels (d) 6 levels

10. A spectral line due to a transition from an electronic state p to an s state splits into three Zeeman lines in the presence of a strong magnetic field. At intermediate field strengths the number of spectral lines is. [**CSIR-JUNE-2014]** (a) 10 (b) 3 (c) 6 (d) 9

11. How much does the total angular momentum quantum number J change in the transition Of Cr(3d⁶) atom as it ionizes to Cr²⁺(3d⁴)? [**CSIR-JUNE-2014]** (a) Increases by 2 (b) Decreases by 2 (c) Decreases by 4 (d) Does not change

12. An atomic transition ${}^{1}P \rightarrow {}^{1}S$ in a magnetic field 1 Tesla shows Zeeman splitting. Given that the Bohr magneton $\mu_B = 9.27 \times 10^{-24}$ J/T, and the wavelength corresponding to the transition is 250 nm, the separation in the Zeeman spectral lines is approximately. *CSIR-DEC-2014* (a) 0.01 nm (b) 0.1 nm (c) 1.0 nm (d) 10 nm

13. The effective spin-spin interaction between the electron spin \vec{S}_e and the proton spin \vec{S}_P in the ground state of the Hydrogen atom is given by $H' = a\vec{S}_e \cdot \vec{S}_P$. As a result of this interaction, the energy levels split by an amount. [**CSIR-DEC-2014]** $(a) \frac{1}{2} a \hbar^2$ (b) $2ah^2$ (c) $a\hbar^2$ (d) $\frac{3}{2} a \hbar^2$

14. Of the following term symbols of the np^2 atomic configurations, 1S_0 , 3P_0 , 3P_1 , 3P_2 , and ${}^{1}D_{2}$ which is the ground state? [**CSIR-JUNE-2015**] (a) ${}^{3}P_{0}$ (b) ${}^{1}S_{0}$ (c) ${}^{3}P_{2}$ (d) ${}^{3}P_{1}$

15. The LS configurations of the ground state of ¹²Mg, ¹³Al, ¹⁷Cl and ¹⁸Ar are respectively. [**CSIR-DEC-2015]** (a) ${}^{3}S_{1}$, ${}^{2}P_{1/2}$, ${}^{2}P_{1/2}$ and ${}^{1}S_{0}$ (b) ${}^{3}S_{1}$, ${}^{2}P_{1/2}$, ${}^{2}P_{3/2}$ and ${}^{1}S_{1}$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

(d)
$$
P_0 n W_{0 \to 1} = P_1 W_{1 \to 0} + P_1 n W_{1 \to 0}
$$

23. The Zeeman shift of the energy of a state with quantum numbers L , S , J and m_J is $H_{z}=\frac{m_{J}\mu_{B}B}{I(I+1)}$ $\frac{m_j \mu_B B}{J(J+1)} \left(\langle \vec{L} . \vec{f} \rangle + \langle \vec{S} . \vec{f} \rangle \right)$ [CSIR-DEC-2017]

where B is the applied magnetic field, g_s is the g -factor for the spin and $\frac{\mu_B}{h}$ = $1.4 MHz - G^{-1}$, where h is the Planck constant. The approximate frequency shift of the S =0, L =1 and $m_s = 1$ state, at a magnetic field of 1G, is (a) 10 MHz (b) 1.4MHz (c) 5MHz (d) 2.8MHz

- **24.** The separations between the adjacent levels of a normal multiplet are found to be 22 cm⁻¹ and 33 cm⁻¹. Assume that the multiplet is described well by the L \Box S coupling scheme and the Lande's interval rule, namely $E (J) = - E (J-1) = AJ$, where A is a constant. The term notaions for this multiplet is. [CSIR-DEC-2017] (a) ${}^{3}P_{0,1,2}$ (b) ${}^{3}F_{2,3,4}$ (c) ${}^{3}G_{3,4,5}$ (d) ${}^{3}D_{1,2,3}$
- **25.** If the fine structure splitting between the $2^{2}P_{3/2}$ and $2^{2}P_{3/2}$ levels in the hydrogen atom is 0.4 cm^{-1} , the corresponding splitting in Li^{2+} will approximately be:

26. Two Stern-Gerlach apparatus S_1 and S_2 are kept in a line (\bar{x} -axis). The directions of their magnetic fields are along the positive \overline{z} and \overline{y} -axes, respectively. Each apparatus only transmits particles with spins aligned in thee direction of its magnetic field. If an initially unpolarized beam of spin 1/2 particles passes through this configuration, the ratio of intensities $l_0 : l_f$ of the initial and final beams is: $\frac{l_0}{l_0}$

[**CSIR-JUNE-2018]** (a) $16 :1$ (b) $2 :1$ (c) $4 :1$ (d) $1 :0$

- **27.** A photon of energy 115.62 keV ionizes a K -shell electron of a Be atom. One L shell electron jumps to the K -shell to fill this vacancy and emits a photon of energy 109.2 keV in the process. If the ionization potential for the L -shell is 6.4 keV , the kinetic energy of the ionized electron is. [**CSIR-JUNE-2018]** (a) 6.42keV (b) 12.82keV (c) 20eV (d) 32eV
- **28.** The value of the Lande g -factor for a fine-structure level defined by the quantum number L=1, $J = 2$ and $S = 1$, is. [**CSIR-JUNE-2018**] $(a) \frac{11}{6}$ (b) $\frac{4}{3}$ $(c) \frac{8}{3}$ $(d) \frac{3}{2}$

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

MOLECULAR

29. A laser operating at 500 nm is used to excite a molecule. If the Stokes line is observed at 770 cm-1 , the approximate positions of the Stokes and the anti-Stokes lines are. *CSIR-DEC-2011* (a) 481.5 nm and 520 nm (b) 481.5 nm and 500 nm (c) 500 nm and 520 nm (d) 500 nm and 600 nm

30. The first absorption spectrum of ¹²C¹⁶O is at 3.842 cm⁻¹ while that of ¹³C¹⁶O is at 3.673 cm-1 . The ratio of their moments of inertia is. [**CSIR-JUNE-2012]** (a) 1.851 (b) 1.286 (c) 1.046 (d) 1.038

31. Consider the hydrogen-deuterium molecule HD. If the mean distance between the two atoms is 0.08 nm and the mass of the hydrogen atom is 938 MeV/ c^2 , then the energy difference ∆E between the two lowest rotational states is approximately.

[**CSIR -JUNE-2013]** (a) 10^{-1} V (b) 10^{-2} eV (c) $2x10^{-2}$ eV eV (d) $10^{-3}eV$

32. If the leading anharmonic correction to the energy of n^{+th} vibrational level of a diatomic molecule is $-x_e \left(n + \frac{1}{2}\right)$ $\frac{1}{2}$ 2 $\hbar\omega$ with x_e = 0.001, the total number of energy levels **possible** is approximately. **Example 10** [CSIR-DEC-2014] (a) 500 (b) 1000 (c) 250 (d) 750

33. A diatomic molecule has vibrational states with energies $E_v = \hbar \omega \left(v + \frac{1}{2} \right)$ $\frac{1}{2}$ and rotational states with energies $E_i=B_i(i+1)$, where v and j are non-negative integers. consider the transitions in which both the initial and final states are restricted to $v \le 1$ and $j \le 2$ and subject to the selection rules $\Delta v = \pm 1$ and $\Delta i = \pm 1$. Then the largest allowed energy of transition is. [CSIR-JUNE-**2015]** (a) $\hbar \omega - 3B$ (b) $\hbar \omega - B$ (c) $\hbar \omega + 4B$ (d) $2\hbar \omega + B$

34. The first ionization potential of K is 4.34 eV, the electron affinity of Cl is 3.82 Ev and the equilibrium separation of KCl is 0.3 nm. Then energy required to dissociate a KCl molecule into a K and a Cl atom is. [**CSIR-DEC-2015]** (a) 8.62 eV (b) 8.16 eV (c) 4.28 eV (d) 4.14 eV

LASER PHYSICS

35. Consider the energy level diagram (as shown in the figure below) of a typical three level ruby laser system with 1.6×10^{19} Chromium ions per cubic centimeter. All the atoms excited by the 0.4 μ m radiation decay rapidly to level E_2 , which has a lifetime $\tau = 3$ ms. [**CSIR-JUNE-2011**]

A. Assuming that there is no radiation of wavelength 0.7 μm present in the pumping cycle and that the pumping rate is R atoms per $cm³$, the population density in the level N_2 builds up as: $[CSIR-JUNE-2011]$

B. The minimum pump power required (per cubic centimeter) to bring the system to transparency, i.e. zero gain, is **[CSIR-JUNE-2011]** (a) 1.52 kW (b) 2.64 kW (c) 0.76 kW (d) 1.32 kW

36. Consider the energy level diagram shown below, which corresponds to the molecular nitrogen laser. *CSIR-DEC-2012*

If the pump rate R is 1020 atoms cm^{-3} s⁻¹ and the decay routes are as shown with $\tau_{21} = 20$ ns and $\tau_1 = 1\mu s$, the equilibrium populations of states 2 and 1 are,
respectively, [CSIR-DEC-2] respectively, [**CSIR-DEC-2012]** (a) 10^{14} cm⁻³ and 2 x 10^{12} cm⁻³ (b) 2×10^{12} cm⁻³ and 10^{14} cm⁻³

- (b) 2×10^{12} cm⁻³ and 10^{14} cm⁻³
- **37.** Consider a hydrogen atom undergoing a 2P →1S transition. The lifetime tsp of the 2P state for spontaneous emission is 1.6 ns and the energy difference between

(d) Zero and 10^{20} cm⁻³

the levels is 10.2 eV. Assuming that the refractive index of the medium $n_0 = 1$,

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

Career Spectra

the ratio of Einstein coefficients for stimulated and spontaneous emission $B_{21}(\omega)/A_{21}$ is given by. [**CSIR-DEC-2012**] (a) $0.683 \times 10^{12} m^3 J^{-1} s^{-1}$ (b) 0.146×10^{-12} Ism⁻³ (c) $6.83 \times 10^{12} m^3 J^{-1} s^{-1}$ (d) 1.463×10^{-12} Ism⁻³

38. Consider a He-Ne laser cavity consisting of two mirrors of reflectivity's $R_1 = 1$ $R_2 = 0.98$. The mirrors are separated by a distance $d = 20$ cm and the medium in between has a refractive index $n_0 = 1$ and absorption coefficient $\alpha = 0$. The values of the separation between the modes δv and the width δv_n of each mode of the laser cavity are: [**CSIR-DEC-2012]** (a) $\delta v = 75kHz$, $\delta v_n = 24kHz$ (b) $\delta v = 100kHz$, $\delta v_n = 100kHz$

- (c) $\delta v = 750kHz$, $\delta v_n = 2$. $MkHz$ (a) $\delta v = 2$. $MkHz$, $\delta v_n = 750kHz$
- **39.** The electronic energy levels in a hydrogen atom are given by $E_n = 13.6/n^2 eV$. If a selective excitation to the $n = 100$ level is to be made using a laser, the maximum allowed frequency line-width of the laser is. [**CSIR-JUNE-2013]** (a) 6.5 MHz (b) 6.5 GHz (c) 6.5 Hz (d) 6.5 kHz
- **40.** Consider the laser resonator cavity shown in the figure. If I_1 is the intensity of the radiation at M_1 and α is the gain coefficient of the medium between the mirrors, then the energy density of photons in the plane P at a distance x from M_1 is.

[**CSIR-JUNE-2013]**

41. A gas laser cavity has been designed to operate at 0.5 km with a cavity length of1m. With this set-up, the frequency is found to be larger than the desired frequency by 100 Hz. The change in the effective length of the cavity required to retune the laser is. *CSIR-DEC-2013* (a) $-0.334 \times 10^{-12} m$ (b) $0.334 \times 10^{-12} m$ (c) $0.167 \times 10^{-12} m$ (d) $-0.167 \times 10^{-12} m$

42. For a two level system, the population of atoms in the upper and lower levels are 3×10^{18} and 0.7×10^{18} , respectively. If the coefficient of stimulated emission is 3.0×10^5 m³/W -s⁻³ and the energy density is 9.0 J / m³ -Hz, the rate of stimulated emission will be. [**CSIR-DEC-2015**] (a) 6.3×10^{18} s⁻¹ (b) 4.1×10^{16} s⁻¹ (c) 2.7×10^{16} s⁻¹ (d) 1.8×10^{16} s⁻¹

43. The separation between the energy levels of a two-level atom is 2 eV . Suppose that 4×10^{20} atoms are in the ground state and 7×10^{20} atoms are pumped into

Let Γ_{ij} denote the decay rate for a transition from the level i to j. The molecules are optically pumped from level 1 to 2 . For the transition from level 3 to level 4 to be a lassing transition, the decay rates have to satisfy. [**CSIR-JUNE-2018]**

(a) $\Gamma_{21} > \Gamma_{23} > \Gamma_{41} > \Gamma_{34}$ (b) $\Gamma_{21} > \Gamma_{41} > \Gamma_{23} > \Gamma_{34}$ (c) $\Gamma_{41} > \Gamma_{23} > \Gamma_{21} > \Gamma_{34}$ (d) $\Gamma_{41} > \Gamma_{21} > \Gamma_{34} > \Gamma_{23}$

 \blacktriangleright

ANSWER KEY

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in